Noncommutative spherically symmetric spaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rosenthal Inequalities in Noncommutative Symmetric Spaces

We give a direct proof of the ‘upper’ Khintchine inequality for a noncommutative symmetric (quasi-)Banach function space with nontrivial upper Boyd index. This settles an open question of C. Le Merdy and the fourth named author [24]. We apply this result to derive a version of Rosenthal’s theorem for sums of independent random variables in a noncommutative symmetric space. As a result we obtain...

متن کامل

Rademacher Averages on Noncommutative Symmetric Spaces

Let E be a separable (or the dual of a separable) symmetric function space, let M be a semifinite von Neumann algebra and let E(M) be the associated noncommutative function space. Let (εk)k≥1 be a Rademacher sequence, on some probability space Ω. For finite sequences (xk)k≥1 of E(M), we consider the Rademacher averages ∑ k εk ⊗ xk as elements of the noncommutative function space E(L(Ω)⊗M) and s...

متن کامل

Spherically Symmetric Dynamical Horizons

We study spherically symmetric dynamical horizons (SSDH) in spherically symmetric Einstein/matter spacetimes. We first determine sufficient and necessary conditions for an initial data set for the gravitational and matter fields to satisfy the dynamical horizon condition in the spacetime development. The constraint equations reduce to a single second order linear “master” equation, which leads ...

متن کامل

Spherically Symmetric Static Spacetimes

In this paper we discuss matter inheritance collineations by giving a complete classification of spherically symmetric static spacetimes by their matter inheritance symmetries. It is shown that when the energy-momentum tensor is degenerate, most of the cases yield infinite dimensional matter inheriting symmetries. It is worth mentioning here that two cases provide finite dimensional matter inhe...

متن کامل

On the Khintchine and Rosenthal Inequalities in Noncommutative Symmetric Spaces

Probabilistic inequalities for independent random variables and martingales play a prominent role in many different areas of mathematical research, such as harmonic analysis, probability theory, Banach space geometry and the study of symmetric function spaces. In the recent years, many of these classical probabilistic inequalities have been generalized to the context of noncommutative Lp-spaces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2011

ISSN: 1550-7998,1550-2368

DOI: 10.1103/physrevd.83.025009